Сторона ромба равна 36, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Рассмотрим треугольник АВС.
Этот треугольник
прямоугольный (по условию задачи).
∠С=90°, так как это прямой угол.
∠A=60°, следовательно по
теореме о сумме углов треугольника:
180° = ∠АВС + ∠А + ∠С
180° = ∠АВС + 60° + 90°
∠АВС = 180°-90°-60°=30°.
По
свойству прямоугольного треугольника:
АС=АВ/2=36/2=18.
Следовательно вторая половина стороны ромба = 36-18=18.
Т.е., в данной задаче, высота, проведенная к стороне ромба делит эту сторону на две равные части.
Ответ: 18 и 18.
Поделитесь решением
Присоединяйтесь к нам...
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 55°. Найдите величину угла ODC.
Сторона ромба равна 9, а расстояние от центра ромба до неё равно 1. Найдите площадь ромба.
Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 57.
Найдите тангенс угла AOB.
Комментарии:
(2016-11-26 20:34:53) Администратор: марк, я внес уточнения в решение задачи, так понятней?
(2016-11-25 20:25:34) марк : откуда взялось 90 ° ?
(2015-04-19 11:27:53) Администратор: Алина, АВ - это сторона ромба, а по условию она равна 36.
(2015-04-19 09:54:27) Алина: Почему АВ стало равным 36?