ОГЭ, Математика. Геометрия: Задача №09EDE9 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №09EDE9

Задача №19 из 1087
Условие задачи:

Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Решение задачи:

Проведем следующие отрезки (как показано на рисунке 2):
1) Из точки О2 к точке касания окружности и продолжения стороны ВС. (точка Р)
2) Из точки О1 к точке касания окружности и продолжения стороны ВС. (Точка К)
3) Из точки О1 к точке О2.
Заметим, что:
1) СМ=АС/2.
2) СР=СМ, по второму свойству касательной.
3) СМ=СК, по второму свойству касательной.
4) O1O2=R+r.
5) O2Р перпендикулярна BC, по первому свойству касательной.
6) O1К тоже перпендикулярна BC, по свойству касательной.
7) Из пунктов 2) и 3) следует, что СР=СК=СМ=АС/2. Тогда РК=АС/2+АС/2=АС.
Следовательно, O2Р || O1К (по свойству параллельных прямых). Отсюда следует, что О1О2РК - прямоугольная трапеция (по определению трапеции). Рассмотрим эту трапецию.
Проведем отрезок О2Е параллельный РК, а раз он параллелен РК, то в свою очередь перпендикулярен О1К и равен ему. Следовательно получившийся треугольник O1O2Е - прямоугольный.
Тогда, по теореме Пифагора, мы можем записать: (O1O2)2=(O2Е)2+(O1Е)2.
Подставим известные нам данные, полученные ранее:
(R+r)2=AC2+(R-r)2. Раскрываем скобки, получаем:
R2+2Rr+r2=AC2+R2-2Rr+r2
2Rr=AC2-2Rr
4Rr=AC2
r=(AC2)/4R
r=62/4*4,5
r=36/4*4,5, r=2
Ответ: радиус вписанной окружности равен 2.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0A3F51

В треугольнике ABC биссектриса угла A делит высоту, проведенную из вершины B в отношении 17:15, считая от точки B. Найдите радиус окружности, описанной около треугольника ABC, если BC=16.



Задача №1138AC

Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром описанной окружности треугольника является точка пересечения серединных перпендикуляров к его сторонам.



Задача №24CEEC

В равнобедренной трапеции основания равны 2 и 6, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.



Задача №E94AC6

На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 12°?



Задача №0247D6

Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 17, а одна из диагоналей ромба равна 68. Найдите углы ромба.

Комментарии:


(2016-10-31 17:57:39) Алина: Здравствуйте, скажите, пожалуйста, можно ли как-нибудь открыть просто правила?
(2015-05-26 20:11:08) Verbizhkiy rulit :***: Администратор, вы сделали такую здоровскую работу))) Спасибо вам от всех учеников лицея 265 и от меня лично)) У вас отличный сайт и, я уверенна, отличная команда))) Завтра экзамен и я благодаря вам буду стараться повысить свою оценку:3 Спасииибоооо
(2015-05-26 14:56:09) Юлия: боооожечки...-_-
(2015-05-25 16:30:41) Администратор: Татьяна, O11E=O1K-EK, O1K - это R, EK=O2P=r
(2015-05-25 13:30:02) Татьяна: Почему O1Е = R-r?
(2015-03-30 14:56:23) Айгуль: Спасибо Вам огромноеее)))
(2015-03-22 14:05:07) Софья: Обалдеть.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика