ОГЭ, Математика. Геометрия: Задача №CA72D9 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №CA72D9

Задача №659 из 1087
Условие задачи:

Окружности с центрами в точках I и J пересекаются в точках A и B, причём точки I и J лежат по одну сторону от прямой AB. Докажите, что AB⊥IJ.

Решение задачи:

AB - является хордой для обоих окружностей.
По второму свойству хорды, серединный перпендикуляр хорды проходит через центр обеих окружностей.
А так как через две точки можно провести только одну прямую, то серединный перпендикуляр и есть прямая IJ.
Т.е. IJ перпендикулярна AB.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №13E145

Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=177°. Найдите величину угла BOC. Ответ дайте в градусах.



Задача №C42955

В ромбе ABCD угол ABC равен 146°. Найдите угол ACD. Ответ дайте в градусах.



Задача №CD62B1

Лестница соединяет точки A и B и состоит из 20 ступеней. Высота каждой ступени равна 16,5 см, а длина – 28 см. Найдите расстояние между точками A и B (в метрах).



Задача №DABB4F

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=21, MN=14. Площадь треугольника ABC равна 27. Найдите площадь треугольника MBN.



Задача №69759E

Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=7, AC=20. Найдите AO.

Комментарии:


(2016-01-05 15:59:33) Дима: Спасибо!!!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика