ОГЭ, Математика. Геометрия: Задача №044E8F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

AB=BC=CD=AD=DH+CH=21+8=29 (по определению ромба).
Рассмотрим треугольник AHD.
AHD - прямоугольный (т.к. AH - высота), тогда по теореме Пифагора: AD2=AH2+DH2
292=AH2+212
841=AH2+441
AH2=400
AH=20
Ответ: AH=20

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0208A9

В треугольнике ABC угол C равен 90°, BC=2, sinA=0,2. Найдите AB.



Задача №038CAC

Докажите, что медиана треугольника делит его на два треугольника, площади которых равны между собой.



Задача №EB43A2

На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.



Задача №B6BD3C

Укажите номера верных утверждений.
1) Если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая медиана равнобедренного треугольника является его биссектрисой.



Задача №0CE6BE

Найдите площадь трапеции, изображённой на рисунке.

Комментарии:


(2017-02-20 23:56:06) Администратор: Наталья, для этого и трудимся. Спасибо и Вам.
(2017-02-20 23:15:17) Наталья: Замечательный сайт, в геометрии не сильно шарю а в этом году огэ сдавать ваш сайт стал для меня находкой, очень подробно и понятно всё объясняется ❤
(2015-02-21 12:32:03) Администратор: Виктория, спасибо и Вам за теплые слова.
(2015-02-21 11:16:00) Виктория: Как замечательно, что существует этот сайт. Спасибо вам огромное)
(2014-12-12 20:31:53) Эбонит: норм
(2014-06-13 14:59:47) динара : спасибо

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика