В треугольнике ABC угол C равен 90°, AC=6, tgA=2√
По
определению: tgA=BC/AC => BC=AC*tgA=6*2√
По
теореме Пифагора:
AB2=BC2+AC2
AB2=(4√
AB2=16*10+36
AB2=196
AB=14
Ответ: AB=14
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /BAC=10° (см. рисунок). Найдите величину угла BOC (в градусах).
Стороны AC, AB, BC треугольника ABC равны 2√
В треугольнике ABC угол C равен 90°, sinB=3/5, AB=10. Найдите AC.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Какие из данных утверждений верны? Запишите их номера.
1) Вокруг любого треугольника можно описать окружность.
2) Если при пересечении двух прямых третьей прямой сумма внутренних односторонних углов равна
180°, то эти прямые параллельны.
3) Площадь треугольника не превышает произведения двух его сторон.
Комментарии:
(2015-05-18 22:10:58) Администратор: Светлана, спасибо большое, исправлено.
(2015-05-18 20:33:43) Светлана: Ошибка в ответе. Корень из 196=14!