Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=12, DC=48, AC=35.
Рассмотрим треугольники ABM и CDM.
∠AMB=∠CMD (так как они
вертикальные).
∠BAM=∠MCD (так как они
внутренние накрест-лежащие).
Следовательно, по
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда, мы можем записать:
DC/AB=MC/AM
48/12=MC/AM
4=MC/AM
4=MC/AM
MC=4AM
AC=AM+MC (по рисунку)
35=AM+4AM
35=5AM
AM=7
MC=4AM=4*7=28
ответ: MC=28
Поделитесь решением
Присоединяйтесь к нам...
Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 1. Найдите площадь трапеции.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB.
В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=60, BC=40. Найдите CM.
Укажите номера верных утверждений.
1) Если один из углов треугольника прямой, то треугольник прямоугольный.
2) Диагонали квадрата точкой пересечения делятся пополам.
3) Точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.
Комментарии:
(2017-01-23 20:14:14) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-01-23 08:25:28) : 3Х^3+5х^2-х-5=0
(2017-01-23 08:24:49) : 3Х^3+5х^2-х-5=0