В прямоугольном треугольнике
ABC катет AC=8, а высота CH, опущенная на гипотенузу, равна 2√
Рассмотрим треугольники ABC и ACH.
∠AHC=∠ACB (т.к. это прямые углы).
∠A - общий.
Следовательно, по
теореме о сумме углов треугольника ∠ACH=∠ABC
Тогда sin∠ACH=sin∠ABC.
Теперь рассмотрим треугольник ACH.
По
теореме Пифагора:
AC2=CH2+AH2
82=(2√
64=4*15+AH2
AH2=64-60
AH2=4
AH=2
sin∠ACH=AH/AC (по
определению)
sin∠ACH=2/8=1/4=0,25
Как было выведено выше:
sin∠ABC=sin∠ACH=0,25
Ответ: sin∠ABC=0,25
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что ВFDЕ — параллелограмм.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=6, CK=10.
В трапеции ABCD AB=CD, ∠BDA=62° и ∠BDC=42°. Найдите угол ABD. Ответ дайте в градусах.
Сторона ромба равна 38, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Какие из данных утверждений верны? Запишите их номера.
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.
3) Площадь круга меньше квадрата длины его диаметра.
Комментарии:
(2016-05-11 09:37:59) Администратор: Олеся, к сожалению, у меня нет такой информации.
(2016-05-11 09:36:57) Олеся: Ответьте пожалуйста, на экзамене эта задача под каким номером. Из второй части?
(2016-05-11 09:32:39) Олеся: Ответьте пожалуйста, на экзамене эта задача под каким номером. Из второй части?