Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника.
Рассмотрим каждое утверждение.
1) "Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны", это утверждение верно по
свойствам углов.
2)"В любой четырёхугольник можно вписать окружность", это утверждение неверно, т.к. должны выполниться
определенные условия.
3) "Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника", это утверждение верно, по
теореме об описанной окружности.
Поделитесь решением
Присоединяйтесь к нам...
Катеты прямоугольного треугольника равны 35 и 120. Найдите высоту, проведённую к гипотенузе.
Синус острого угла A треугольника ABC равен √
Основания трапеции равны 3 и 9, а высота равна 5. Найдите среднюю линию этой трапеции.
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 135°, а CD=36.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.
Комментарии: