Какие из данных утверждений верны? Запишите их номера.
1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
2) Площадь круга меньше квадрата длины его диаметра.
3) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.
Рассмотрим каждое утверждение.
1) "Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны", это утверждение неверно, т.к. не соответствует ни одному из
признаков равенства треугольников.
2) "Площадь круга меньше квадрата длины его диаметра". Прощадь круга равна ΠR2, или ΠD2/4. Число Π (Пи) равно, приблизительно, 3,14. Тогда Sкруга=0,785D2. А это, конечно меньше, чем D2. Утверждение верно
3) "Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб", это утверждение неверно, т.к. полностью не соответствует ни одному
свойству ромба. Например, четырехугольник, изображенный на рисунке, его диагонали перпендикулярны, но очевидно, что это не ромб.
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD основания AD и BC равны соответственно 48 и 3, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=3.
Радиус окружности, вписанной в равносторонний треугольник, равен 5. Найдите высоту этого треугольника.
Катеты прямоугольного треугольника равны 5√
В треугольнике ABC известно, что AB=BC, ∠ABC=122°. Найдите угол BCA. Ответ дайте в градусах.
Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Найдите длину стороны AC, если радиус описанной окружности треугольника ABC равен 7.
Комментарии: