В треугольнике ABC известно, что AB=BC, ∠ABC=122°. Найдите угол BCA. Ответ дайте в градусах.
Так как, по условию, AB=BC, то данный треугольник называется равнобедренным.
По
первому свойству равнобедренного треугольника углы, противолежащие равным сторонам, равны между собой (обозначим их α).
Тогда по теореме о сумме углов треугольника:
180°=∠ABC+∠BCA+∠CAB
180°=122°+∠α+∠α
180°-122°=2∠α
58°=2∠α
∠α=58°/2=29°
Ответ: 29
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC=34.
Найдите площадь параллелограмма, изображённого на рисунке.
В остроугольном треугольнике ABC высота AH равна 20√
Площадь равнобедренного треугольника равна 144√
В остроугольном треугольнике ABC высота AH равна 20√
Комментарии: