Точка О – центр окружности, /BAC=10° (см. рисунок). Найдите величину угла BOC (в градусах).
По условию /BAC=10°, этот угол является
вписанным углом и равен половине градусной меры дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 10°*2=20°.
/BOC является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /BOC=20°.
Ответ: /BOC=20°.
Поделитесь решением
Присоединяйтесь к нам...
Косинус острого угла А треугольника равен . Найдите sinA.
В треугольнике два угла равны 43° и 88°. Найдите его третий угол. Ответ дайте в градусах.
Четырёхугольник ABCD описан около окружности, AB=7, BC=10, CD=14. Найдите AD.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 75°. Найдите величину угла ODC.
Середина E стороны AD выпуклого четырехугольника равноудалена от всех его вершин. Найдите AD, если BC=8, а углы B и C четырёхугольника равны соответственно 92° и 148°.
Комментарии: