Точка О – центр окружности, /AOB=130° (см. рисунок). Найдите величину угла
ACB (в градусах).
По условию /AOB=130°, этот угол является
центральным, соответственно дуга АВ (нижняя часть) тоже равна 130°. /ACB - является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле). Соответственно, 130/2=65.
Ответ: /ACB=65°.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C прямой, AC=8, cosA=0,4. Найдите AB.
В прямоугольном треугольнике катет и гипотенуза равны 7 и 25 соответственно. Найдите другой катет этого треугольника.
Четырёхугольник ABCD описан около окружности, AB=7, BC=10, CD=14. Найдите AD.
В треугольнике два угла равны 72° и 42°. Найдите его третий угол. Ответ дайте в градусах.
В трапеции ABCD AD=4, BC=1, а её площадь равна 35. Найдите площадь треугольника ABC.
Комментарии: