Задача №32 из 42 |
Найдите корень уравнения 4x-6=64.
Чтобы решить это показательное уравнение, нужно правую часть привести к тому же основанию, что левая, т.е. к 4:
4x-6=64
4x-6=43
Теперь воспользуемся теоремой для решения показательных уравнений:
x-6=3
x=3+6=9
Ответ: 9
Поделитесь решением
Присоединяйтесь к нам...
Среди дачников в посёлке есть те, кто выращивает виноград, и есть те, кто выращивает груши. А также есть те, кто не выращивает ни виноград,
ни груши. Некоторые дачники в этом посёлке, выращивающие виноград, также выращивают и груши. Выберите утверждения, которые верны
при указанных условиях.
1) Если дачник из этого посёлка не выращивает виноград, то он выращивает груши.
2) Среди тех, кто выращивает виноград, есть дачники из этого посёлка.
3) Есть хотя бы один дачник в этом посёлке, который выращивает и груши, и виноград.
4) Если дачник в этом посёлке выращивает виноград, то он не выращивает груши.
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Решите уравнение x2+8=6x.
Если уравнение имеет более одного корня, в ответе укажите больший из них.
Решите уравнение x2+10x+21=0.
Если уравнение имеет более одного корня, в ответе укажите меньший из них.
Школа приобрела стол, доску, магнитофон и принтер. Известно, что принтер дороже магнитофона, а доска дешевле магнитофона и дешевле стола. Выберите утверждения, которые верны при указанных условиях.
1) Магнитофон дешевле доски.
2) Принтер дороже доски.
3) Доска — самая дешёвая из покупок.
4) Принтер и доска стоят одинаково.
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Когда какая-нибудь кошка идёт по забору, пёс Шарик, живущий в будке возле дома, обязательно лает. Выберите утверждения, которые верны
при приведённом условии.
1) Если Шарик не лает, значит, по забору идёт кошка.
2) Если Шарик молчит, значит, кошка по забору не идёт.
3) Если по забору идёт чёрная кошка, Шарик не лает.
4) Если по забору пойдёт белая кошка, Шарик будет лаять.
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
| Свойство | a>1 | 0<a<1 |
| Область определения | D(f)=(∞;+∞) | D(f)=(-∞;+∞) |
| Область значений | E(f)=(0;+∞) | E(f)=(0;+∞) |
| Монотонность | Возрастает | Убывает |
| Непрерывность | Непрерывная | Непрерывная |
Комментарии: