Задача №32 из 42 |
Найдите корень уравнения 4x-6=64.
Чтобы решить это показательное уравнение, нужно правую часть привести к тому же основанию, что левая, т.е. к 4:
4x-6=64
4x-6=43
Теперь воспользуемся теоремой для решения показательных уравнений:
x-6=3
x=3+6=9
Ответ: 9
Поделитесь решением
Присоединяйтесь к нам...
Найдите корень уравнения 
Найдите корень уравнения log3(2x-5)=2.
Маша младше Алисы на год, но старше Кати на два года. Выберите утверждения, которые верны при указанных условиях.
1) Любая девочка, помимо указанных, которая старше Кати, также старше Маши.
2) Среди указанных девочек нет никого младше Кати.
3) Любая девочка, помимо указанных, которая старше Маши, также старше Кати.
4) Алиса и Катя одного возраста.
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Решите уравнение x2+6=5x.
Если уравнение имеет более одного корня, в ответе укажите больший из них.
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
A)
|
1)
|
Б)
|
2)
|
В)
|
3)
|
Г)
|
4)
|
| Свойство | a>1 | 0<a<1 |
| Область определения | D(f)=(∞;+∞) | D(f)=(-∞;+∞) |
| Область значений | E(f)=(0;+∞) | E(f)=(0;+∞) |
| Монотонность | Возрастает | Убывает |
| Непрерывность | Непрерывная | Непрерывная |
Комментарии: