Задача №32 из 42 |
Найдите корень уравнения 4x-6=64.
Чтобы решить это показательное уравнение, нужно правую часть привести к тому же основанию, что левая, т.е. к 4:
4x-6=64
4x-6=43
Теперь воспользуемся теоремой для решения показательных уравнений:
x-6=3
x=3+6=9
Ответ: 9
Поделитесь решением
Присоединяйтесь к нам...
Решите уравнение x2=16.
Если уравнение имеет более одного корня, в ответе укажите больший из них.
Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок, делая первый прыжок из начала координат. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, совершив ровно 8 прыжков?
На координатной прямой отмечены точки A, B, C и D.

Каждой точке соответствует одно из чисел в правом столбце. Установите соответствие между указанными точками и числами.
| ТОЧКИ | ЧИСЛА |
| A | 1) √11+√3 |
| B | 2) √11*√3 |
| C | 3) √11-√3 |
| D | 4) (√3)3-2 |
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
| А) (x-1)2(x-4)<0 | 1) (-∞; 1)∪(4; +∞) |
Б) ![]() |
2) (1; 4)∪(4; +∞) |
| В) (x-1)(x-4)<0 | 3) (-∞; 1)∪(1; 4) |
Г) ![]() |
4) (1; 4) |
Маша младше Алисы на год, но старше Кати на два года. Выберите утверждения, которые верны при указанных условиях.
1) Любая девочка, помимо указанных, которая старше Кати, также старше Маши.
2) Среди указанных девочек нет никого младше Кати.
3) Любая девочка, помимо указанных, которая старше Маши, также старше Кати.
4) Алиса и Катя одного возраста.
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
| Свойство | a>1 | 0<a<1 |
| Область определения | D(f)=(∞;+∞) | D(f)=(-∞;+∞) |
| Область значений | E(f)=(0;+∞) | E(f)=(0;+∞) |
| Монотонность | Возрастает | Убывает |
| Непрерывность | Непрерывная | Непрерывная |
Комментарии: