Постройте график функции

Определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Область Допустимых Значений (ОДЗ).
x≠0 (так как делить на ноль нельзя).
Так как функция содержит
модуль, то ее надо разложить на две подфункции:




Теперь найдем для каких х
, а для каких х 
Найдем эти диапазоны.
Для начала преобразуем эту разность дробей, чтобы было легче проводить дальнейшие вычисления:

Последнее действие проводилось по формуле разность квадратов.
1) Рассмотрим первое неравенство
.
Дробь больше нуля в двух случаях:
a) Когда и числитель и знаменатель больше нуля.
b) Когда и числитель и знаменатель меньше нуля.
Рассмотрим вариант "а":


Чтобы решить систему неравенств нужно решить каждое неравенство по отдельности и пересечь полученные диапазоны.
Диапазон второго неравенства (0;+∞), а диапазон для первого неравенства найдем, решив уравнение (x-6)(x+6)=0
x1=6
x2=-6
Коэффициент а=1, т.е. больше нуля, следовательно, ветви параболы направлены вверх. Значит диапазон для первого неравенства:
(-∞;-6]∪[6;+∞).
Пересекаем с диапазоном второго неравенства:
(-∞;-6]∪[6;+∞)∩(0;+∞)=[6;+∞)
Рассмотрим случай b), когда и числитель и знаменатель меньше нуля.


Эту систему решать не будем, а возьмем "обратные" диапазоны, т.е. для первого неравенства диапазон будет (-6;6), а для второго (-∞;0).
Пересекаем диапазоны:
(-6;6)∩(-∞;0)=(-6;0)
В итоге мы получили, что:
на диапазонах (-6;0) и [6;+∞)
2) Рассмотрим второе неравенство
.
Решать это неравенство также не будем, а просто возьмем обратный диапазон от первого: (-∞;-6) и (0;6).
Запишем нашу первоначальную систему с полученными диапазонами:

Построим графики функций.
Красным цветом постоим первую функцию, которая является прямой, по точкам:
| X | -6 | 0 | 6 |
| Y | -1 | 0 | 1 |
| X | -12 | -6 | 1 | 6 |
| Y | -0,5 | -1 | 6 | 1 |
Поделитесь решением
Присоединяйтесь к нам...
Когда самолёт находится в горизонтальном полёте, подъёмная сила, действующая на крылья, зависит только от скорости. На рисунке изображена эта зависимость для некоторого самолёта. На оси абсцисс откладывается скорость (в километрах в час), на оси ординат — сила (в тоннах силы). Определите по рисунку, на сколько увеличится подъёмная сила (в тоннах силы) при увеличении скорости с 200 км/ч до 400 км/ч.
Установите соответствие между графиками функций и формулами, которые их задают.
| ФОРМУЛЫ | ГРАФИКИ | ||
|
1) y=x2+4 2) y=-2x+4 3) y=-4/x |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции y=x2+3x-4|x+2|+2 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Постройте график функции
-x2+10x-21 при x≥3
-x+3 при x<3
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А)
Б)
В) 
ФОРМУЛЫ
1)
2)
3) 
В таблице под каждой буквой укажите соответствующий номер.
Комментарии: