Постройте график функции y=|x2-9|. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Так как функция содержит
модуль, то данную функцию надо разложить на две функции, в зависимости от значения модуля.
y=x2-9, при x2-9≥0
y=-(x2-9), при x2-9<0
Вычислим при каких значениях х функция меняет свой знак, для этого решим неравенство:
x2-9≥0
Найдем корни уравнения x2-9=0
x2-32=0
Воспользуемся формулой
разность квадратов:
(x-3)(x+3)=0
x1=3
x2=-3
Функция y=x2-9 будет больше нуля в диапазонах, где ее график располагается выше оси Х, и, соответственно, меньше нуля на диапазонах, когда график ниже оси Х.
Итак:
x2-9≥0, когда x∈(-∞; -3]∪[3; +∞)
x2-9<0, когда x∈(-3;3)
Значит можем переписать систему:
y=x2-9, при x ∈ (-∞; -3]∪[3; +∞)
y=-(x2-9), при x ∈ (-3; 3)
y=x2-9, при x ∈ (-∞; -3]∪[3; +∞)
y=-x2+9, при x ∈ (-3; 3)
График каждой из подфункция - парабола, но у первой параболы ветви направлены вверх (так как "а" положительный), а у второй - вниз (так как "а" отрицательный).
Построим оба графика по точкам:
1)y=x2-9, при x ∈ (-∞; -3]∪[3; +∞) (красный график):
X | -3 | -4 | -5 | 3 | 4 | 5 |
Y | 0 | 7 | 16 | 0 | 7 | 16 |
X | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y | 0 | 5 | 8 | 9 | 8 | 5 | 0 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунках изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) a<0, c>0
2) a>0, c>0
3) a>0, c<0
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции y=x2-6|x|+8. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
На графике изображена зависимость атмосферного давления (в миллиметрах ртутного столба) от высоты местности над уровнем моря (в километрах). На сколько миллиметров ртутного столба атмосферное давление на высоте Эвереста ниже атмосферного давления на высоте Эльбруса?
На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a<0, c>0 2) a>0, c>0 3) a>0, c<0 4) a<0, c<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Комментарии: