Постройте график функции y=|x2-9|. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Так как функция содержит
модуль, то данную функцию надо разложить на две функции, в зависимости от значения модуля.
y=x2-9, при x2-9≥0
y=-(x2-9), при x2-9<0
Вычислим при каких значениях х функция меняет свой знак, для этого решим неравенство:
x2-9≥0
Найдем корни уравнения x2-9=0
x2-32=0
Воспользуемся формулой
разность квадратов:
(x-3)(x+3)=0
x1=3
x2=-3
Функция y=x2-9 будет больше нуля в диапазонах, где ее график располагается выше оси Х, и, соответственно, меньше нуля на диапазонах, когда график ниже оси Х.
Итак:
x2-9≥0, когда x∈(-∞; -3]∪[3; +∞)
x2-9<0, когда x∈(-3;3)
Значит можем переписать систему:
y=x2-9, при x ∈ (-∞; -3]∪[3; +∞)
y=-(x2-9), при x ∈ (-3; 3)
y=x2-9, при x ∈ (-∞; -3]∪[3; +∞)
y=-x2+9, при x ∈ (-3; 3)
График каждой из подфункция - парабола, но у первой параболы ветви направлены вверх (так как "а" положительный), а у второй - вниз (так как "а" отрицательный).
Построим оба графика по точкам:
1)y=x2-9, при x ∈ (-∞; -3]∪[3; +∞) (красный график):
| X | -3 | -4 | -5 | 3 | 4 | 5 |
| Y | 0 | 7 | 16 | 0 | 7 | 16 |
| X | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| Y | 0 | 5 | 8 | 9 | 8 | 5 | 0 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции

и определите, при каких значениях m прямая y=m имеет с графиком одну или две общие точки.
Установите соответствие между графиками функций и формулами, которые их задают.
| ФУНКЦИИ | ГРАФИКИ | ||
|
1) y=-(2/x) 2) y=x2-2 3) y=2x 4) y=2/x |
А) ![]() |
Б) ![]() |
В) ![]() |
Когда самолёт находится в горизонтальном полёте, подъёмная сила, действующая на крылья, зависит только от скорости. На рисунке изображена эта зависимость для некоторого самолёта. На оси абсцисс откладывается скорость (в километрах в час), на оси ординат — сила (в тоннах силы). Определите по рисунку, на сколько увеличится подъёмная сила (в тоннах силы) при увеличении скорости с 200 км/ч до 400 км/ч.
Постройте график функции

Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
A)
Б)
В) 
ФОРМУЛЫ
1) y=12/x
2) y=-12/x
3) y=1/(12x)
В таблице под каждой буквой укажите соответствующий номер.
Комментарии: