Постройте график функции y=x2-4|x|-2x и определите, при каких значениях m прямая y=m имеет с графиком не менее одной, но не более трёх общих точек.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
y=x2-4x-2x, при x≥0
y=x2-4(-x)-2x, при x<0
y=x2-6x, при x≥0
y=x2+2x, при x<0
Рассмотрим и построим график для каждой подфункции на определенном им диапазонах и объединим их.
График обеих подфункций - парабола, при чем, ветви параболы направлены вверх (так как коэффициент "а" больше нуля).
Для первой подфункции (красная):
| X | 0 | 1 | 3 | 6 |
| Y | 0 | -5 | -9 | 0 |
| X | 0 | -1 | -2 | -3 |
| Y | 0 | -1 | 0 | 3 |
Поделитесь решением
Присоединяйтесь к нам...
На графике изображена зависимость атмосферного давления (в миллиметрах ртутного столба) от высоты над уровнем моря (в километрах). Найдите, чему равно атмосферное давление на высоте 1 км. Ответ дайте в миллиметрах ртутного столба.
Постройте график функции
и определите, при каких значениях k прямая y=kx не имеет с графиком ни одной общей точки.
Постройте график функции
.
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Постройте график функции
.
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) ƒ(x)<0 при x<1
2) Наибольшее значение функции равно 3
3) ƒ(0)>ƒ(4)
Комментарии: