Постройте график функции y=x2-4|x|-2x и определите, при каких значениях m прямая y=m имеет с графиком не менее одной, но не более трёх общих точек.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
y=x2-4x-2x, при x≥0
y=x2-4(-x)-2x, при x<0
y=x2-6x, при x≥0
y=x2+2x, при x<0
Рассмотрим и построим график для каждой подфункции на определенном им диапазонах и объединим их.
График обеих подфункций - парабола, при чем, ветви параболы направлены вверх (так как коэффициент "а" больше нуля).
Для первой подфункции (красная):
| X | 0 | 1 | 3 | 6 |
| Y | 0 | -5 | -9 | 0 |
| X | 0 | -1 | -2 | -3 |
| Y | 0 | -1 | 0 | 3 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А) y=-2x+4
Б) y=2x-4
В) y=2x+4
ГРАФИКИ
1)
2)
3) 
В таблице под каждой буквой укажите соответствующий номер.
На рисунке изображены графики функций вида y=ax2+bx+c. Для каждого графика укажите соответствующее ему значения коэффициента a и дискриминанта D.
| КОЭФФИЦИЕНТЫ | ГРАФИКИ | |||
|
1) a>0, D>0 2) a>0, D<0 3) a<0, D>0 4) a<0, D<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Г) ![]() |
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b..
| КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
|
1) k<0, b<0 2) k>0, b<0 3) k<0, b>0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции
-x2-2x+3, если х≥-2
-x+1, если x<-2
и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции
y=|x2-x-2|.
Какое наибольшее число общих точек может иметь график данной функции с прямой, параллельной оси абсцисс?
Комментарии: