Постройте график функции y=x2-4|x|-2x и определите, при каких значениях m прямая y=m имеет с графиком не менее одной, но не более трёх общих точек.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
y=x2-4x-2x, при x≥0
y=x2-4(-x)-2x, при x<0
y=x2-6x, при x≥0
y=x2+2x, при x<0
Рассмотрим и построим график для каждой подфункции на определенном им диапазонах и объединим их.
График обеих подфункций - парабола, при чем, ветви параболы направлены вверх (так как коэффициент "а" больше нуля).
Для первой подфункции (красная):
| X | 0 | 1 | 3 | 6 |
| Y | 0 | -5 | -9 | 0 |
| X | 0 | -1 | -2 | -3 |
| Y | 0 | -1 | 0 | 3 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
| УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
| А) Функция возрастает на промежутке Б) Функция убывает на промежутке | 1) [2;5] 2) [0;1] 3) [-3;-1] 4) [-2;2] |
Установите соответствие между графиками функций и формулами, которые их задают.
| ФУНКЦИИ | ГРАФИКИ | ||
|
1) y=x2+2 2) y=(1/2)x 3) y=-6/x 4) y=(-1/2)x |
А) ![]() |
Б) ![]() |
В) ![]() |
Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C.
На графике показано изменение температуры в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси — температура двигателя в градусах Цельсия. Определите по графику,
через сколько минут с момента запуска двигатель нагреется до 40°C.
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В) 
КОЭФФИЦИЕНТЫ
1) k<0, b>0
2) k<0, b<0
3) k>0, b>0
В таблице под каждой буквой укажите соответствующий номер.
Комментарии: