Постройте график функции и определите, при каких значениях k прямая y=kx не имеет с графиком ни одной общей точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
Теперь надо построить график каждой подфункции в его границах и объединить их.
1) , при х≥0.
Напишем Область Допустимых Значений (ОДЗ).
Так как знаменатель не может равняться нулю, то x-2x2≠0 Следовательно:
x(1-2x)≠0
x1≠0
x2≠1/2
График представляет из себя гиперболу, отметим несколько точек:
X | 0,5 | 1 | 2 |
Y | -2 | -1 | -0,5 |
X | -0,5 | -1 | -2 |
Y | -2 | -1 | -0,5 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Известно, что графики функций y=x2+p и y=2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Постройте график функции y=4|x-3|-x2+8x-15 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=-3 2) y=x-3 3) y=-3x 4) y=3x |
А) | Б) | В) |
Постройте график функции y=|x|x-|x|-3x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: