Расстояние между пристанями А и В равно 140 км. Из А в В по течению реки отправился плот, а через час вслед за ним отправилась моторная лодка, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот прошёл 51 км. Найдите скорость лодки в неподвижной воде, если скорость течения реки равна 3 км/ч.
Скорость плота равна скорости реки.
Обозначим v - скорость лодки в неподвижной воде (т.е. собственная скорость).
v+3 - скорость лодки по течению.
v-3 - скорость лодки против течения.
Время лодки от пристани А до пристани В:
t1=140/(v+3)
Время лодки от пристани B до пристани A:
t2=140/(v-3)
Следовательно суммарное время лодки в пути:
t=t1+t2=140/(v+3)+140/(v-3)
За это же время +1 час плот проплыл 51 км со скоростью 3 км/ч:
t+1=51/3=17 часов
t=16 часов.
Возвращаемся к лодке, и получаем уравнение:
16=140/(v+3)+140/(v-3) |:4
4=35/(v+3)+35/(v-3) |:4
4=35(v-3)/((v+3)(v-3))+35(v+3)/((v-3)(v+3))
4=(35(v-3)+35(v+3))/((v-3)(v+3))
4
(v-3)(v+3)=35(v-3)+35(v+3)
4(v2-32)=35v-35*3+35v+35*3
4(v2-9)=35v+35v
4v2-36=70v
4v2-70v-36=0 |:2
2v2-35v-18=0
Решим это
квадратное уравнение:
D=(-35)2-4*2*(-18)=1225+144=1369
v1=(-(-35)+37)/(2*2)=72/4=18
v2=(-(-35)-37)/(2*2)=-2/4=-0,5
Отрицательной скорость быть не может, следовательно v=18 км/ч.
Ответ: 18
Поделитесь решением
Присоединяйтесь к нам...
Решите неравенство x2-36>0.
1) (-∞;+∞)
2) (-∞;-6)∪(6;+∞)
3) (-6;6)
4) нет решений
На счёт в банке, доход по которому составляет 20% годовых, внесли 29 тыс. руб.. Сколько тысяч рублей будет на этом счёте через год, если никаких операций, кроме начисления процентов, со счётом проводиться не будет?
Решите неравенство
Катер прошёл от одной пристани до другой, расстояние между которыми по реке равно 48 км, сделал стоянку на 20 мин и вернулся обратно через 5 целых 1/3 ч после начала поездки. Найдите скорость течения реки, если известно, что скорость катера в стоячей воде равна 20 км/ч.
Найдите наибольшее значение x, удовлетворяющее системе неравенств
Комментарии: