Укажите неравенство, решение которого изображено на рисунке.
1) x2-49>0
2) x2-49<0
3) x2+49<0
4) x2+49>0
Посмотрим на предложенные неравенства:
- все они квадратичные, т.е. графики этих функций - параболы
- у всех аргумент "а" равен единице, т.е. больше нуля, следовательно ветви их парабол направлены вверх
- графики парабол 1) и 2) будут совпадать, т.к. это одинаковые функции.
- графики парабол 3) и 4) будут совпадать, т.к. это одинаковые функции.
Посмотрим на рисунок решения неравенства:
- корни квадратичной функции должны быть -7 и 7.
Решим уравнение x2-49=0
x2-72=0
(x-7)(x+7)=0
x-7=0 => x1=7
x+7=0 => x2=-7
Неравенства 1) и 2), судя по корням, подходят.
Решим уравнение x2+49=0
x2=-49
Данное уравнение не имеет корней, т.к. ни какое число, возведенное в квадрат не даст отрицательный результат. Значит неравенства 3) и 4) не подходят.
Посмотрим на рисунок, в условии показан диапазон, когда график функции выше оси Х, т.е. больше нуля, следовательно, подходит неравенство x2-49>0
Ответ: 1)
Поделитесь решением
Присоединяйтесь к нам...
На координатной прямой отмечено число a.
Из следующих утверждений выберите верное.
1) (a-6)2>1
2) (a-7)2<1
3) a2<36
4) a2>49
Укажите неравенство, решение которого изображено на рисунке.
1) x2-6x<0
2) x2-6x>0
3) x2-36<0
4) x2-36>0
На координатной прямой отмечены числа x и y.
Какое из приведённых утверждений неверно?
1) y-x<0
2) x2y>0
3) xy<0
4) x+y>0
На каком рисунке изображено множество решений неравенства x2+9x+20<0?
1)
2)
3)
4)
На координатной прямой отмечены точки A, B, C, D. Одна из них соответствует числу √
1) точка A
2) точка B
3) точка C
4) точка D
Комментарии: