Геометрическая прогрессия (bn) задана условиями: b1=64, bn+1=bn*1/2. Найдите b7.
В данном случае, вместо того, чтобы воспользоваться
формулами для
геометрической прогрессии, легче решить эту задачу "в лоб". Т.е. найти b2, b3, ..., b7.
b1=64 (по условию).
b2=b1*1/2=64*1/2=64/2=32
b3=b2*1/2=32/2=16
b4=16/2=8
b5=8/2=4
b6=4/2=2
b7=2/2=1
Ответ: b7=1
Поделитесь решением
Присоединяйтесь к нам...
В геометрической прогрессии сумма первого и второго членов равна 200, а сумма второго и третьего членов равна 50. Найдите первые три члена этой прогрессии.
Последовательность задана формулой an=40/(n+1). Сколько членов этой последовательности больше 2?
Дана арифметическая прогрессия (an), разность которой равна 0,6, a1=6,2. Найдите сумму первых 13 её членов.
Геометрическая прогрессия задана условием bn=62,5*2n. Найдите сумму первых её 4 членов.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 39-й строке?
Комментарии: