Геометрическая прогрессия (bn) задана условиями: b1 = –128, bn+1=1/2*bn. Найдите b7.
Зная, что bn+1=1/2*bn, т.е. b7=1/2*b6, можно,конечно, вычислить все первые 7 членов последовательности, но это трудоемко. К тому же, если бы потребовалось вычислить 300-ый член, то это заняло бы очень много времени.
Есть способ проще:
В
геометрической прогрессии bn=b1qn-1, нам неизвестна только q. Вычислить ее можно по формуле: bn+1/bn=q
Используя эту формулу и условие задачи, мы видим, что q=1/2. Тогда:
b7=b1(1/2)(7-1)
b7=-128*(1/2)6=-128*1/64=-2.
Ответ: b7=-2
Поделитесь решением
Присоединяйтесь к нам...
Дана геометрическая прогрессия (bn), для которой b5=-14, b8=112. Найдите знаменатель прогрессии.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 8 квадратов больше, чем в предыдущей. Сколько квадратов в 34-й строке?
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 117-й строке?
Выписаны первые несколько членов геометрической прогрессии: -256; 128; -64; … Найдите сумму первых семи её членов.
Записаны первые три члена арифметической прогрессии: 30; 24; 18. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Комментарии: