ОГЭ, Математика. Числовые последовательности: Задача №24B689 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №24B689

Задача №69 из 182
Условие задачи:

Выписаны первые несколько членов геометрической прогрессии: 17; 68; 272; ... Найдите её четвёртый член.

Решение задачи:

В геометрической прогрессии зависимость членов прогрессии можно записать так: bn+1=bnq
Тогда:
b2=b1q
68=17q
q=4
b4=b3q=272*4=1088
Ответ: b4=1088

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №17C33D

Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 6 квадратов больше, чем в предыдущей. Сколько квадратов в 53-й строке?



Задача №E53FE9

Выписаны первые несколько членов геометрической прогрессии: 1512; -252; 42; … Найдите сумму первых четырёх её членов.



Задача №C61C01

Последовательность задана условиями b1=-3, bn+1=-3*1/bn. Найдите b4.



Задача №AEC6A3

Дана геометрическая прогрессия (bn), знаменатель которой равен 1/2, b1=2. Найдите сумму первых 4 её членов.



Задача №4BA08B

Дана арифметическая прогрессия (an), разность которой равна -4,9, a1=-0,2. Найдите a7.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика