ОГЭ, Математика. Числовые последовательности: Задача №24B689 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №24B689

Задача №69 из 182
Условие задачи:

Выписаны первые несколько членов геометрической прогрессии: 17; 68; 272; ... Найдите её четвёртый член.

Решение задачи:

В геометрической прогрессии зависимость членов прогрессии можно записать так: bn+1=bnq
Тогда:
b2=b1q
68=17q
q=4
b4=b3q=272*4=1088
Ответ: b4=1088

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E7AFE6

Выписаны первые несколько членов арифметической прогрессии: 1, 3, 5, … Найдите её одиннадцатый член.



Задача №288E24

Выписаны первые несколько членов арифметической прогрессии: -7; -4; -1; … Найдите сумму первых десяти её членов.



Задача №6D31F4

Дана арифметическая прогрессия: -7; -5; -3; … Найдите сумму первых пятидесяти её членов.



Задача №037FCF

Дана арифметическая прогрессия: -3; 1; 5; … . Найдите сумму первых шестидесяти её членов.



Задача №20B9C2

Дана арифметическая прогрессия (an), разность которой равна 1,6, a1=-1. Найдите a11.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика