В геометрической прогрессии сумма первого и второго членов равна 160, а сумма второго и третьего членов равна 40. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=160
b1+b1q=160
b1(1+q)=160
2) b2+b3=40
b1q+b1q2=40
b1(q+q2)=40
b1(q+1)q=40
Подставляем из п. 1)
160q=40 => q=0,25, тогда b1(1+0,25)=160 => b1=128
b2=128*0.25=32
b3=128*0,252=8
Ответ: b1=128, b2=32, b3=8
Поделитесь решением
Присоединяйтесь к нам...
Арифметическая прогрессия задана условием an=3,8-5,7n. Найдите a6.
Записаны первые три члена арифметической прогрессии: 20; 13; 6. Какое число стоит в этой арифметической прогрессии на 81-м месте?
Геометрическая прогрессия задана условием bn=-17,5*2n. Найдите сумму первых её 7 членов.
Дана арифметическая прогрессия: 4; 7; 10; … . Найдите сумму первых шестидесяти пяти её членов.
Геометрическая прогрессия задана условием bn=88*2n. Найдите сумму первых её 4 членов.
Комментарии: