В геометрической прогрессии сумма первого и второго членов равна 108, а сумма второго и третьего членов равна 135. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=108
b1+b1q=108
b1(1+q)=108
2) b2+b3=135
b1q+b1q2=135
b1(q+q2)=135
b1(q+1)q=135
Подставляем вместо b1(q+1) значение из п. 1)
108q=135 => q=135/108=1,25
Подставляем значение q в уравнение 1):
b1(1+1,25)=108
b1=108/2,25=48
b2=48*1,25=60
b3=b2q=60*1,25=75
Ответ: b1=48, b2=60, b3=75
Поделитесь решением
Присоединяйтесь к нам...
Выписано несколько последовательных членов геометрической прогрессии: …; 1,75; x; 28; -112; … Найдите член прогрессии, обозначенный буквой x.
Выписаны первые несколько членов арифметической прогрессии: -6; -3; 0; … Найдите сумму первых десяти её членов.
Выписаны первые три члена геометрической прогрессии:
125; -100; 80; …
Найдите её пятый член.
Выписаны первые несколько членов геометрической прогрессии: 17; 68; 272; ... Найдите её четвёртый член.
(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5 , b1=375. Найдите сумму первых 5 её членов.
Комментарии: