Юмор

Автор: Катя
- Вовочка, у тебя в кармане сто рублей, ты попросил у отца еще сто, сколько у тебя будет д...читать далее

ОГЭ, 9-й класс. Математика: Алгебраические выражения


Задача №149 из 300. Номер задачи на WWW.FIPI.RU - E7EF61


Постройте график функции y=|x2-x-2|. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?

Решение задачи:

Так как функция y=|x2-x-2| содержит модуль, то данную функцию надо разложить на две функции, в зависимости от значения модуля.
y=x2-x-2, при x2-x-2≥0
y=-(x2-x-2), при x2-x-2<0
Вычислим при каких значениях х функция меняет свой знак, для этого решим неравенство:
x2-x-2≥0
Найдем корни уравнения x2-x-2=0
D=(-1)2-4*1*(-2)=1+8=9
x1=(-(-1)+3)/(2*1)=4/2=2
x2=(-(-1)-3)/(2*1)=-2/2=-1
Решением данного неравенства будет диапазон (-∞; -1]∪[2; +∞), и меньше нуля в диапазоне (-1; 2).
Значит можем переписать систему:
y=x2-x-2, при x ∈ (-∞; -1]∪[2; +∞)
y=-(x2-x-2), при x ∈ (-1; 2)
Построим оба графика по точкам:
1) y=x2-x-2, при x ∈ (-∞; -1]∪[2; +∞) (красный график):

X -3 -2 -1 2 3 4
Y 10 4 0 0 4 10
2) y=-(x2-x-2), , при x ∈ (-1; 2) (синий график):
X -1 0 1 2
Y 0 2 2 0
Очевидно, что прямая, параллельная оси абсцисс будет иметь максимум 4 общие точки. Это видно на примере зеленой прямой.
Ответ: 4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Алгебраические выражения' (от 1 до 300)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2018. Все права защищены. Яндекс.Метрика