ОГЭ, Математика. Числовые последовательности: Задача №1625CE | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Данная последовательность - арифметическая.
В условии сказано:
an+1=an+4
an+1-an=4=d - это разность прогрессии.
Любой член арифметической прогрессии можно выразить через a1:
an=a1+(n-1)d, тогда:
a10=a1+(10-1)d=3+9*4=3+36=39
Ответ: 39

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №5BCE3D

Записаны первые три члена арифметической прогрессии: -17; -14; -11. Какое число стоит в этой арифметической прогрессии на 81-м месте?



Задача №60BDAB

Последовательность задана условиями a1=3, an+1=an-4. Найдите a10.



Задача №DBE73B

В геометрической прогрессии сумма первого и второго членов равна 108, а сумма второго и третьего членов равна 135. Найдите первые три члена этой прогрессии.



Задача №43A083

Арифметическая прогрессия задана условием an=-0,6+8,6n. Найдите сумму первых 10 её членов.



Задача №1617B1

Дана арифметическая прогрессия (an), разность которой равна 2,5, a1=8,7. Найдите a9.

Комментарии:


(2015-05-11 13:53:57) Администратор: Диана, а дополнил решение. По определению d=an+1-an.
(2015-05-11 06:27:00) Диана: Почему d=4?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Арифметическая прогрессия - числовая последовательность вида a1, a1+d, a1+2d,..., a1+(n-1)d,...то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):
an=an-1+d
Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:
an=a1+(n-1)d, где a1 - первый член последовательности, d - ее разность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика