Дана геометрическая прогрессия (bn), для которой b3=4/7, b6=-196. Найдите знаменатель прогрессии.
Любой член геометрической прогрессии можно представить через первый член (b1) и знаменатель прогрессии q.
bn=b1qn-1
Тогда:
b3=b1q2
b6=b1q5
Подставляем значения:
4/7=b1q2
-196=b1q5
Разделим второе уравнение на первое:
q3=-343
Ответ: -7
Поделитесь решением
Присоединяйтесь к нам...
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 6 квадратов больше, чем в предыдущей. Сколько квадратов в 53-й строке?
Записаны первые три члена арифметической прогрессии: -8; -1; 6. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Дана арифметическая прогрессия (an), в которой a3=-21,4, a13=-40,4.
Найдите разность прогрессии.
В геометрической прогрессии сумма первого и второго членов равна 40, а сумма второго и третьего членов равна 120. Найдите первые три члена этой прогрессии.
Выписано несколько последовательных членов геометрической прогрессии: …; 1,5; x; 24; -96; … Найдите член прогрессии, обозначенный буквой x.
Комментарии: