Дана геометрическая прогрессия (bn), для которой b3=4/7, b6=-196. Найдите знаменатель прогрессии.
Любой член геометрической прогрессии можно представить через первый член (b1) и знаменатель прогрессии q.
bn=b1qn-1
Тогда:
b3=b1q2
b6=b1q5
Подставляем значения:
4/7=b1q2
-196=b1q5
Разделим второе уравнение на первое:
q3=-343
Ответ: -7
Поделитесь решением
Присоединяйтесь к нам...
Выписаны первые несколько членов арифметической прогрессии: -7; -5; -3; … Найдите сумму первых пятидесяти её членов.
(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5 , b1=375. Найдите сумму первых 5 её членов.
Геометрическая прогрессия задана условием bn=51,5(-2)n. Найдите b4.
Арифметическая прогрессия задана условием an=3,8-5,7n. Найдите a6.
Арифметическая прогрессия (an) задана условиями a1=48, an+1=an-17. Найдите сумму первых 17 её членов.
Комментарии: