ОГЭ, Математика. Числовые последовательности: Задача №DAB7E3 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Любой член арифметической прогрессии можно записать через первый член прогрессии (a1) и разность прогрессии: an=a1+(n-1)d
a3=a1+(3-1)d
6,9=a1+2d
6,9-2d=a1 (1)
a16=a1+(16-1)d
26,4=a1+15d
Подставляем значение a1 из уравнения (1):
26,4=6,9-2d+15d
26,4-6,9=13d
19,5=13d
d=1,5
Ответ: 1,5

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №19B940

Дана арифметическая прогрессия (an), в которой a10=-10, a16=-19.
Найдите разность прогрессии.



Задача №5F8982

Дана арифметическая прогрессия (an), для которой a6=-7,8, a19=-10,4. Найдите разность прогрессии.



Задача №7B9ECC

Выписаны первые несколько членов геометрической прогрессии: -1024; -256; -64; … Найдите сумму первых пяти её членов.



Задача №44DC20

Геометрическая прогрессия (bn) задана условиями: b1=64, bn+1=bn*1/2. Найдите b7.



Задача №75ED29

Геометрическая прогрессия задана условием bn=-77*2n. Найдите сумму первых её 5 членов.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Арифметическая прогрессия - числовая последовательность вида a1, a1+d, a1+2d,..., a1+(n-1)d,...то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):
an=an-1+d
Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:
an=a1+(n-1)d, где a1 - первый член последовательности, d - ее разность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика