ОГЭ, Математика. Числовые последовательности: Задача №BE16EF | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №BE16EF

Задача №119 из 182
Условие задачи:

Выписаны первые несколько членов арифметической прогрессии: 1; 3; 5; … Найдите сумму первых шестидесяти её членов.

Решение задачи:

Чтобы найти сумму арифметической прогрессии у нас есть две формулы.
Вариант 1 (по первой формуле)
Для этого найдем d - разность прогрессии.
d=a2-a1=3-1=2.
Найдем a60:
a60=a1+(n-1)d=1+(60-1)2=119

Ответ: 3600


Вариант 2 (по второй формуле)


Ответ: 3600

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FD3153

Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.



Задача №908B3E

Выписаны первые несколько членов арифметической прогрессии: 6; 10; 14; … Найдите сумму первых пятидесяти её членов.



Задача №851C9B

В геометрической прогрессии сумма первого и второго членов равна 160, а сумма второго и третьего членов равна 40. Найдите первые три члена этой прогрессии.



Задача №3FDCD7

Дана арифметическая прогрессия (an), разность которой равна 7, a1=9,4. Найдите a13.



Задача №E7AFE6

Выписаны первые несколько членов арифметической прогрессии: 1, 3, 5, … Найдите её одиннадцатый член.

Комментарии:


(2017-11-13 21:30:48) Администратор: Ольга, я сделал решение более читабельным. Надеюсь вопросы сняты.
(2017-11-10 18:39:40) Ольга: А как получили 30 ?!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Арифметическая прогрессия - числовая последовательность вида a1, a1+d, a1+2d,..., a1+(n-1)d,...то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):
an=an-1+d
Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:
an=a1+(n-1)d, где a1 - первый член последовательности, d - ее разность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика