ОГЭ, Математика. Геометрия: Задача №116D41 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №116D41

Задача №36 из 1087
Условие задачи:

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.

Решение задачи:

По условию задачи ВМ - медиана треугольника АВС, следовательно, по свойству медианы, площади треугольников АВМ и ВСМ равны, и равны половине площади треугольника АВС.
SABM=SBCM=(SABC)/2.
В свою очередь, AK является медианой для треугольника АВМ, следовательно, по тому же свойству медианы
SABК=SAKM=(SABM)/2=(SABC)/4.
Проведем отрезок СК. СК является медианой для треугольника СМВ, следовательно,
SCMK=SCKB=(SCMB)/2=(SABC)/4.
Проведем отрезок МЕ, параллельно АР. МЕ является средней линией для треугольника АРС, следовательно (по теореме о средней линии) СЕ=ЕР. А для треугольника МВЕ КР является средней линией, следовательно ВР=ЕР(=СЕ). Т.е. сторона ВС делится на три равные части точками Р и Е.
Проведем высоту h, как показано на рисунке. h является общей высотой для треугольников СКВ и СКР. Выше мы определили, что SCKB=(SABC)/4. Площадь этого же треугольника =(1/2)*h*BC. SCKP=(1/2)*h*РС=(1/2)*h*(2/3)*ВС=(2/3)*(1/2)*h*BC=(2/3)SCKB=(2/12)SABC =(1/6)SABC.
SKPCM=SCMK+SCKP=(SABC)/4+(1/6)SABC=(5/12)SABC. Следовательно отношение SKPMC к SAMK равно ((5/12)SABC)/(1/4)SABC=5/3.
Ответ: SKPMC/SAMK=5/3.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №A3FFD2

Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=4, AC=64. Найдите AK.



Задача №C85353

Точка О – центр окружности, /ACB=62° (см. рисунок). Найдите величину угла AOB (в градусах).



Задача №FC7964

Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника.



Задача №5561BC

На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.



Задача №7F5197

От столба к дому натянут провод длиной 13 м, который закреплён на стене дома на высоте 4 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 12 м.

Комментарии:


(2015-05-24 11:47:05) Администратор: Олеся, высота не обязательно проходит через сам треугольник, она может лежать и вне треугольника, главное, чтобы она была перпендикулярна стороне.
(2015-05-24 07:29:55) Олеся: Я не понимаю,как h может быть высотой для СКР?
(2015-01-23 23:18:12) Администратор: Всеволод, обязательно изучу Ваш вариант и, если он окажется проще, то обязательно добавлю на сайт.
(2015-01-23 13:29:20) Всеволод: Предлагаю вариант без проведения ME. Может кому-то будет проще. Пусть x=S(ABK)=S(AKM)=S(KMC)=S(KBC) Пусть y=S(KBP), тогда S(KPC)=S(KBC)-S(KBP)=x-y Отношение их площадей S(KBP)/S(KPC)=y/(x-y) Отношение площадей S(ABP)/S(APC) будет таким же, как и S(KBP)/S(KPC), ведь у них те же основания BP и PC, только общая вершина уже в А, а не в точке K. S(ABP)/S(APС)=S(KBP)/S(KPC) Набираем площади ABP и APС в наших переменных: S(ABP)/S(APС)=(x+y)/(x+x+(x-y)) Равенство отношений площадей: (x+y)/(3x-y)=y/(x-y), откуда находим x=3y Искомое отношение площадей в наших переменных: S(KPCM)/S(AMK)=((x-y)+x)/x=((3y-y)+3y)/3y=5/3
(2014-09-24 00:20:05) : спасибо
(2014-09-24 00:20:05) : спасибо

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Медиана треугольника
- отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.
Свойства медианы треугольника:
1) Медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
2) Медиана разбивает треугольник на два равновеликих треугольника.
3) Треугольник делится тремя медианами на шесть равновеликих треугольников.
4) Большей стороне треугольника соответствует меньшая медиана.
5) Из векторов, образующих медианы, можно составить треугольник.
6) При аффинных преобразованиях медиана переходит в медиану.
7) Формула медианы через стороны (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):, где mc — медиана к стороне c; a, b, c — стороны треугольника. В частности, сумма квадратов медиан произвольного треугольника в 4/3 раза меньше суммы квадратов его сторон:
8) Формула стороны через медианы: , где ma, mb, mc медианы к соответствующим сторонам треугольника, a, b, c — стороны треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика