ОГЭ, Математика. Геометрия: Задача №92C757 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №92C757

Задача №83 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны", это утверждение верно (по признаку параллельности прямых)
2) "Диагональ трапеции делит её на два равных треугольника." Во-первых, нет такого свойства трапеции. Во-вторых, если рассмотреть прямоугольную трапецию с проведенной диагональю, то становится очевидным, что один из получившихся треугольников - прямоугольный, а второй - нет. Следовательно, это утверждение неверно.
3) "Если в ромбе один из углов равен 90°, то такой ромб — квадрат". Чтобы ромб был квадратом, необходимо, чтобы все 4 угла были равны 90°.
Т.к. ромб - частный случай параллелограмма, то к нему и применимы все свойства параллелограмма, следовательно (по свойству параллелограмма), противоположный прямому углу, угол тоже равен 90°.
Другие два угла по тому же свойству равны друг другу.
Сумма углов многоугольника вычисляется по формуле (n-2)*180°, где n - количество углов. В нашем случае, углов - 4. Тогда сумма углов равна (4-2)*180°=360°.
Тогда получается, что сумма двух неизвестных углов равна 360°-90°-90°=180°. А так как они равны друг другу, то каждый из них равен 180°/2=90°.
Т.е. мы узнали, что все четыре угла равны по 90°, следовательно это утверждение верно.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №07AA72

Найдите тангенс угла С треугольника ABC, изображённого на рисунке.



Задача №CF5F48

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.



Задача №6C9EF4

В треугольнике ABC угол C равен 135°, AB=14√2. Найдите радиус окружности, описанной около этого треугольника.



Задача №1F36A0

На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что /EAB=45°. Найдите ED.



Задача №200783

Высота BH ромба ABCD делит его сторону AD на отрезки AH=4 и HD=1. Найдите площадь ромба.

Комментарии:


(2015-04-11 12:09:16) Администратор: Света, спасибо за уточнение, исправлено.
(2015-04-11 00:21:53) света: по 1)-это признак параллельности прямых ,а не свойство

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства трапеций:
1)Средняя линия трапеции параллельна основаниям и равна их полусумме.

a||c, c||b, c=(a+b)/2
2) Отрезок, соединяющий середины диагоналей, равен половине разности оснований и лежит на средней линии.

c=(a-b)/2
3) (Обобщённая теорема Фалеса). Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.
4) В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.
5) Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен (среднее гармоническое), где x и y — основания трапеции (формула Буракова).
7) Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
8) Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
9) Треугольники, лежащие на основаниях при пересечении диагоналей, подобные.
10) Треугольники, лежащие на боковых сторонах, равновеликие.
11) Если отношение оснований равно K, то отношение площадей треугольников, лежащих на основаниях равно K2.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика