На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что
/EAB=45°. Найдите ED.
Рассмотрим треугольник АВЕ.
/B=90° (т.к. ABCD -
прямоугольник).
/EAB=45° (по условию задачи).
Тогда по
теореме о сумме углов треугольника /BEA=180°-/B-/EAB=180°-90°-45°=45°.
Следовательно, треугольник ABE -
равнобедренный (по
свойству). Тогда AB=BE (по
определению равнобедренного треугольника).
EC=BC-BE=17-12=5 (т.к. BC=AD).
Рассмотрим треугольник ECD.
Он
прямоугольный (т.к. угол С - прямой).
Тогда по
теореме Пифагора получаем:
ED2=CD2+EC2
ED2=122+52
ED2=144+25=169
ED=13
Ответ: ED=13
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 57. Найдите площадь четырёхугольника ABMN.
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
В треугольнике ABC угол C равен 90°, BC=5, AC=2.
Найдите tgB.
Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 15 м от земли. Расстояние от основания флагштока
до места крепления троса на земле равно 8 м. Найдите длину троса. Ответ дайте в метрах.
Комментарии: