Высота BH ромба ABCD делит его сторону AD на отрезки AH=4 и HD=1. Найдите площадь ромба.
Площадь
ромба равна S=ah, где a - сторона ромба, h - высота ромба.
AD=AH+HD=4+1=5.
AD=AB=BC=CD (по
определению ромба).
Рассмотрим треугольник ABH.
ABH -
прямоугольный (т.к. BH -
высота), тогда по
теореме Пифагора: AB2=BH2+AH2
52=BH2+42
25=BH2+16
BH2=9
BH=3
Sромба=AD*BH=5*3=15
Ответ: Sромба=15
Поделитесь решением
Присоединяйтесь к нам...
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Площадь прямоугольного треугольника равна 578√
Длина хорды окружности равна 60, а расстояние от центра окружности до этой хорды равно 40. Найдите диаметр окружности.
На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 1 м, высота фонаря 9 м?
Радиус окружности, вписанной в прямоугольную трапецию, равен 18. Найдите высоту этой трапеции.
Комментарии:
(2014-05-29 21:26:43) Администратор: Сабин, главное, что Вы сами все поняли, без подсказки.
(2014-05-29 21:14:17) Сабит: извините,это я не прав,я забыль,что ромб имеет все свойства квадрата,а у квадрата все стороны равны.
(2014-05-29 21:11:24) Сабит: Вы в формулу Пифагора подставили место AB в квадрате 5 в квадрате,а там сказано,что AD=5,а не AB.