Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.
Рассмотрим каждое утверждение.
1) "Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности", это утверждение неверно,т.к. все зависит от расположения окружностей. Например, если центры окружностей совпадают, то окружности не пересекутся.
2) "Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны", это утверждение верно (по
свойству углов)
3) "У
равнобедренного треугольника есть
центр симметрии", это утверждение неверно, т.к. у
равнобедренного треугольника есть только
осевая симметрия (ось совпадает с медианой опущенной к основанию).
Поделитесь решением
Присоединяйтесь к нам...
Углы при одном из оснований трапеции равны 77° и 13°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 11 и 10. Найдите основания трапеции.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 75°. Найдите величину угла ODC.
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен
60°. Найдите длину хорды АВ, если радиус окружности равен 8.
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Комментарии: