Укажите номера верных утверждений.
1) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
2) Смежные углы равны.
3) Медиана равнобедренного треугольника, проведённая к его основанию, является его высотой.
Рассмотрим каждое утверждение.
1) "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники
подобны", это утверждение верно по
признаку подобия треугольников.
2) "Смежные углы равны", это утверждение неверно. По
определению, сумма смежных углов равна 180°, поэтому они будут равны только в одном случае, когда равны 90 градусам. В остальных случаях, смежные углы не равны.
3) "Медиана равнобедренного треугольника, проведённая к его основанию, является его высотой", это утверждение верно. Это
свойство равнобедренного треугольника.
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, описанной около квадрата, равен 48√2. Найдите радиус окружности, вписанной в этот квадрат.
Высота BH ромба ABCD делит его сторону AD на отрезки AH=44 и HD=11. Найдите площадь ромба.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=8, BC=24. Найдите AK.
В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=3 и CH=1. Найдите cosB.
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 8 и 7. Найдите площадь параллелограмма ABCD.
Комментарии: