ОГЭ, Математика. Геометрия: Задача №805818 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №805818

Задача №69 из 1087
Условие задачи:

Стороны AC, AB, BC треугольника ABC равны 32, 14 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.

Решение задачи:

По условию задачи /KAC>90°, т.е. это наибольший угол в треугольнике AKC следовательно, сторона KC, противолежащая этому углу тоже наибольшая (по теореме о соотношениях между сторонами и углами треугольника). Сторона AC равная 32 - наибольшая сторона исходного треугольника ABC (т.к. 32>14>1). Следовательно, угол ABC - наибольший угол треугольника ABC.
По условию задачи треугольник KAC подобен исходному треугольнику ABC. А значит углы этих треугольников соответственно равны (по определению подобных треугольников). Поэтому наибольшие углы двух рассматриваемых треугольников равны, т.е. /KAC=/ABC. /ACK не равен /ACB ( т.к. KC пересекает сторону AB в точке, отличной от B), поэтому /ACK = /BAC. Следовательно, /AKC=/ACB => cos(/AKC)=cos(/ACB).
Применяя теорему косинусов мы можем записать AB2=AC2+BC2-2*AC*BC*cos(/ACB).
(14)2=(32)2+12-2*32*1*cos(/ACB);
14=9*2+1-6*2*cos(/ACB);
14-19=-6*2*cos(/ACB);
5=6*2*cos(/ACB);
cos(/AKC)=cos(/ACB)=5/(6*2)
Ответ: cos(/AKC)=5/(6*2)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №797303

Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=18, DK=9, BC=16. Найдите AD.



Задача №92214F

Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 30° и 120°, а CD=25.



Задача №1586C3

Основания трапеции равны 8 и 18. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.



Задача №691110

Периметр треугольника равен 48, одна из сторон равна 18, а радиус вписанной в него окружности равен 3. Найдите площадь этого треугольника.



Задача №5561BC

На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что углы АDB и BEC тоже равны. Докажите, что треугольник АВС — равнобедренный.

Комментарии:


(2017-03-30 23:04:20) Администратор: БМБ, решите свою задачу по аналогии с этой.
(2017-03-29 22:10:44) БМБ: Стороны AC, AB, BCтреугольника ABC равны и 2 коня из 3 и корень из 7 1 соответственно. Точка K расположе‐ на вне треугольника ABC , причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K , A и C подобен исходному. Найдите косинус угла AKC, если ∠KAC>90° .
(2017-03-29 22:03:07) БМБ: . Стороны AC, AB, BC треугольника ABC равны ,3корня из 2 ,корень из 14 и 1 соответственно. Точка K расположе‐ на вне треугольника ABC , причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если ∠KAC>90°

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема косинусов.
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.


X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика