Высоты AA1 и BB1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы AA1B1 и ABB1 равны.
Проведем отрезок A1B1 и рассмотрим треугольники EB1A и EA1B.
∠A1EB=∠B1EA (так как они
вертикальные).
∠EB1A=∠EA1B=90° (так как BB1 и AA1 -
высоты).
По
первому признаку подобия треугольников, рассматриваемые треугольники
подобны.
Следовательно:
EB1/EA1=EA/EB
Рассмотрим треугольники EA1B1 и EAB
∠BEA=∠B1EA1 (так как они
вертикальные).
Как мы выяснили ранее:
EB1/EA1=EA/EB
Умножим левую и правую части равенства на EA1, получим:
EB1=EA1*EA/EB
Разделим левую и правую части на EA, получаем:
EB1/EA=EA1/EB
Получается, что по
второму признаку подобия треугольников, треугольники EA1B1 и EAB
подобны.
Следовательно, по
определению, углы AA1B1 и ABB1 равны.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, sinA=4/5, AC=9. Найдите AB.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=4, BC=32. Найдите AK.
Прямая, параллельная основаниям трапеции
ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
В треугольнике ABC известно, что AB=BC, ∠ABC=102°. Найдите угол BCA. Ответ дайте в градусах.
Сторона ромба равна 24, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Комментарии:
(2017-05-10 22:22:34) Администратор: Дмитрий, если не сложно, то пришлите, пожалуйста, Ваш вариант решения на admin@otvet-gotov.ru
(2017-05-08 09:36:21) Дмитрий: С помощью описанной окружности решение короче и легче