Высоты AA1 и BB1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы AA1B1 и ABB1 равны.
Проведем отрезок A1B1 и рассмотрим треугольники EB1A и EA1B.
∠A1EB=∠B1EA (так как они
вертикальные).
∠EB1A=∠EA1B=90° (так как BB1 и AA1 -
высоты).
По
первому признаку подобия треугольников, рассматриваемые треугольники
подобны.
Следовательно:
EB1/EA1=EA/EB
Рассмотрим треугольники EA1B1 и EAB
∠BEA=∠B1EA1 (так как они
вертикальные).
Как мы выяснили ранее:
EB1/EA1=EA/EB
Умножим левую и правую части равенства на EA1, получим:
EB1=EA1*EA/EB
Разделим левую и правую части на EA, получаем:
EB1/EA=EA1/EB
Получается, что по
второму признаку подобия треугольников, треугольники EA1B1 и EAB
подобны.
Следовательно, по
определению, углы AA1B1 и ABB1 равны.
Поделитесь решением
Присоединяйтесь к нам...
От столба высотой 12 м к дому натянут провод, который крепится на высоте 4 м от земли (см. рисунок). Расстояние от дома до столба 15 м. Вычислите длину провода. Ответ дайте в метрах.
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.
Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=21, BF=20.
Лестницу длиной 2 м прислонили к дереву.
На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на
1,2 м?
Комментарии:
(2017-05-10 22:22:34) Администратор: Дмитрий, если не сложно, то пришлите, пожалуйста, Ваш вариант решения на admin@otvet-gotov.ru
(2017-05-08 09:36:21) Дмитрий: С помощью описанной окружности решение короче и легче