В равнобедренной трапеции основания равны 2 и 8, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.
Проведем высоты как показано на рисунке. И рассмотрим треугольник CDF. Это
прямоугольный треугольник (т.к. /CFD - прямой).
По
теореме о сумме углов треугольника найдем угол FCD
/FCD=180°-90°-45°=45°. Заметим, что /FCD=/FDC. Следовательно, треугольник
равнобедренный (по
свойству равнобедренного треугольника). Отсюда следует, что FD=FC (по
определению равнобедренного треугольника).
Рассмотрим треугольник ABE. /BAE=/FDC=45° (т.к. по условию задачи
трапеция равнобедренная).
Аналогично по
теореме о сумме углов треугольника получим, что /ABE=180°-90°-45°=45°, а следовательно (аналогично предыдущему треугольнику) треугольник ABE -
равнобедренный.
Причем эти треугольники равны (AB=CD, BE=CF и /ABE=/FCD -
первый признак равенства)=> AE=FD.
Рассмотрим четырехугольник BCFE.
Т.к. BC||EF, BE и FC - высоты, следовательно /BEF=90°=/CFE. /EBC=/BCF=90°. Следовательно четырехугольник BCFE -
прямоугольник => BC=EF.
Теперь можем записать:
AD=AE+EF+FD, 8=AE+2+FD, 8=AE+2+AE
6=2*AE => AE=3.
Т.к. AE=BE=3, а BE-высота трапеции, то теперь можем вычислить
площадь трапеции.
Sтрапеции=(BC+AD)/2*BE
Sтрапеции=(2+8)/2*3=15.
Ответ: Sтрапеции=15.
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.
В треугольнике ABC угол C равен 90°, tgB=3/4, BC=12. Найдите AC.
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 3 и 9.
Точка О – центр окружности, /BOC=50° (см. рисунок). Найдите величину угла BAC (в градусах).
Комментарии:
(2015-04-12 14:12:34) Администратор: Раньше мы доказали что треугольники ABE и DCF равны, поэтому FD=AE. Цитата из решения "Причем эти треугольники равны (AB=CD, BE=CF и /ABE=/FCD - первый признак равенства)=> AE=FD."
(2015-04-12 14:03:16) : непонятно , почему там fd ПРЕВРАТИЛОСЬ В AE?Теперь можем записать: AD=AE+EF+FD, 8=AE+2+FD, 8=AE+2+AE