ОГЭ, Математика. Геометрия: Задача №1B4DE1 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №1B4DE1

Задача №221 из 1087
Условие задачи:

Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 110°.

Решение задачи:

Проведем отрезок ОА.
/DOA - центральный угол для данной окружности. Он опирается на дугу AD, равную 110°. Следовательно, /DOA тоже равен 110°.
/AOC - смежный углу DOA, поэтому /AOC=180°- /DOA=180°-110°=70°.
Треугольник ACO - прямоугольный, т.к. радиус всегда перпендикулярен касательной (по свойству касательной). Т.е. /ОАС=90°. Применяя теорему о сумме углов треугольника, можем записать:
180°=/AСO+/CAO+/AOC.
/AСO=180°-/CAO-/AOC=180°-90°-70°=20°.
Ответ: /ACO=20°.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №C4F011

Радиус окружности, описанной около равностороннего треугольника, равен 23. Найдите длину стороны этого треугольника.



Задача №12C88E

Катеты прямоугольного треугольника равны 8 и 6. Найдите синус наименьшего угла этого треугольника.



Задача №DC3FCE

Радиус окружности, описанной около квадрата, равен 142. Найдите радиус окружности, вписанной в этот квадрат.



Задача №ADA70A

Точка О – центр окружности, /AOB=130° (см. рисунок). Найдите величину угла ACB (в градусах).



Задача №0C7DF1

В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема о сумме углов треугольника.
Сумма углов треугольника равна 180°.

α+β+γ=180°
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика