Сторона ромба равна 30, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Рассмотрим треугольник АВС, этот треугольник
прямоугольный (по условию задачи). /A=60°, следовательно по
теореме о сумме углов треугольника /АВС = 180°-90°-60°=30°. По
свойству прямоугольного треугольника АС=АВ/2=30/2=15. Следовательно вторая половина стороны ромба = 30-15=15. Т.е., в данной задаче, высота, проведенная к стороне ромба делит эту сторону на две равные части.
Ответ: длины обоих отрезков равны 15.
Поделитесь решением
Присоединяйтесь к нам...
Дан правильный шестиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный шестиугольник.
Дан правильный восьмиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный восьмиугольник.
Найдите угол ABC. Ответ дайте в градусах.
Стороны AC, AB, BC треугольника ABC равны 2√
В прямоугольном треугольнике гипотенуза равна 70, а один из острых углов равен 45°. Найдите площадь треугольника.
Комментарии:
(2016-03-05 20:16:42) Администратор: Сэм, почему такой ответ показано в решении, а вот почему у Вас другой ответ - сказать не смогу пока не увижу Ваше решение.
(2016-03-04 17:13:22) сэм: почему такой ответ у меня получилось по другому