Синус острого угла A треугольника ABC равен √
Вариант №1
В условии задачи про треугольник ничего не сказано. Но мы можем нарисовать такой прямоугольный треугольник, чтобы и у него
синус острого угла был равен √
Чтобы sinA был равен √
По тоереме Пифагора:
AB2=CB2+AC2
52=(√
25=21+AC2
AC2=4
AC=2
Тогда, по определению
косинуса:
cosA=AC/AB=2/5=0,4
Ответ: 0,4
Вариант №2
Воспользуется
основной тригонометрической формулой:
sin2A+cos2A=1
(√
21/25+cos2A=1
cos2A=1-21/25=1-0,84=0,16
cosA=0,4
Ответ: 0,4
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /AOB=128° (см. рисунок). Найдите величину угла ACB (в градусах).
Высота BH ромба ABCD делит его сторону AD на отрезки AH=21 и HD=54. Найдите площадь ромба.
Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=25, BC=15, CF:DF=3:2.
Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 8.
Комментарии: