Точка О – центр окружности, /AOB=110° (см. рисунок). Найдите величину угла ACB (в градусах).
По условию /AOB=110°, этот угол является
центральным, соответственно дуга АВ (нижняя часть) тоже равна 110°. /ACB - является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле). Соответственно, 110/2=55.
Ответ: /ACB=55°.
Поделитесь решением
Присоединяйтесь к нам...
Углы B и C треугольника ABC равны соответственно 66° и 84°.
Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 15.
На окружности отмечены точки A и B так, что меньшая дуга AB равна 152°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.
Площадь прямоугольного треугольника равна 18√
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:4, KM=13.
Найдите площадь треугольника, изображённого на рисунке.
Комментарии: