Точка О – центр окружности, /ACB=62° (см. рисунок). Найдите величину угла AOB (в градусах).
По условию /ACB=62°, этот угол является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 62°*2=124°.
/AOB является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /AOB=124°.
Ответ: /AOB=124°.
Поделитесь решением
Присоединяйтесь к нам...
Трапеция ABCD с основаниями AD и BC описана около окружности, AB=14, BC=8, CD=12. Найдите AD.
Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BKC.
В треугольнике ABC известно, что AB=2, BC=3, AC=4. Найдите cos∠ABC.
Комментарии: