Решение какого из данных неравенств изображено на рисунке?
1) x2-x<0
2) x2-1<0
3) x2-1>0
4) x2-x>0
Посмотрим на предложенные неравенства:
- все они квадратичные, т.е. графики этих функций - параболы
- у всех аргумент "а" равен еденице, т.е. больше нуля, следовательно ветви их парабол направлены вверх
- графики парабол 1) и 4) будут совпадать, т.к. это одинаковые функции.
- графики парабол 2) и 3) будут совпадать, т.к. это одинаковые функции.
Посмотрим на рисунок решения неравенства:
- корни квадратичной функции должны быть 0 и 1.
Решим уравнение x2-x=0
x(x-1)=0
Произведение равно нулю, когда один из множителей равен нулю, получаем:
x1=0
x-1=0 => x2=1
Значит неравенства 1) и 4) подходят (судя по корням).
Проверим x2-1=0
x2-12=0
(x-1)(x+1)=0
x-1=0 => x1=1
x+1=0 => x2=-1
Неравенства 2) и 3) не подходят.
Посмотрим на рисунок, в условии показан диапазон, когда график функции ниже оси Х, т.е. меньше нуля, следовательно, подходит неравенство x2-x<0
Ответ: 1)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
На координатной прямой отмечены числа а и с.
Какое из следующих утверждений неверно?
1) c-a<0
2) ac>0
3) 0<c+1<1
4) -a>0
На рисунке изображены графики функций y=6-x2 и y=5x. Вычислите абсциссу точки B.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k<0, b<0 Б) k<0, b>0 В) k>0, b<0 |
1) | 2) | |
3) | 4) |
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k>0, b>0 Б) k<0, b>0 В) k<0, b<0
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Комментарии: