ОГЭ, Математика. Геометрия: Задача №1541EF | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем отрезок ОВ.
Отрезок OB - это радиус окружности и этот отрезок перпендикулярен AB (по свойству касательной).
Следовательно, треугольник AOB - прямоугольный, тогда, по теореме Пифагора:
AO2=AB2+OB2
752=212+OB2
5625=441+OB2
OB2=5184
OB=72=R
Ответ: 72

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №B34077

Касательные в точках A и B к окружности с центром O пересекаются под углом 28°. Найдите угол ABO. Ответ дайте в градусах.



Задача №02B7B4

В трапеции ABCD AD=4, BC=1, а её площадь равна 35. Найдите площадь треугольника ABC.



Задача №203B94

Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=122° и ∠ACB=47°. Найдите угол DCB. Ответ дайте в градусах.



Задача №D56817

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №AB7216

В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника COD.

Комментарии:


(2023-02-14 01:23:05) : Через концы А, В хорды окружности проведены касательные АС и ВС. Угол АСВ равен 130°. Найдите градусную величину меньшей дуги окружности, которая стягивается хордой АВ. В ответ запишите только число.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика