В параллелограмме KLMN точка B — середина стороны LM. Известно, что BK=BN. Докажите, что данный параллелограмм — прямоугольник.
Рассмотрим треугольники KLB и NMB. LB=MB, т.к. точка B - середина LM, BK=BN из условия задачи, LK=MN (по свойству параллелограмма). Соответственно, треугольники KLB и NMB равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /KLB=/NMB.
LK||MN (по определению параллелограмма), рассмотрим сторону LM как секущую к этим параллельным сторонам. Тогда получается, что сумма углов KLB и NMB равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны LM и KN, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону KL как секущую к этим параллельным сторонам.
/KLB и /LKN - внутренние односторонние. Следовательно их сумма равна 180°. А так как /KLB=90°, то /LKN тоже равен 90°.
Аналогично доказывается, что /MNK тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).
Поделитесь решением
Присоединяйтесь к нам...
Медиана BM треугольника ABC равна 3 и является диаметром окружности, пересекающей сторону BC в её середине. Найдите диаметр описанной окружности треугольника ABC.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=11, а расстояние от точки K до стороны AB равно 3.
На клетчатой бумаге с размером клетки 1x1 изображён ромб. Найдите площадь этого ромба.
Площадь равнобедренного треугольника равна 144√
Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=122° и ∠ACB=47°. Найдите угол DCB. Ответ дайте в градусах.
Комментарии: