Точка О – центр окружности, /ACB=25° (см. рисунок). Найдите величину угла AOB (в градусах).
По условию /ACB=25°, этот угол является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 25°*2=50°.
/AOB является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /AOB=50°.
Ответ: /AOB=50°.
Поделитесь решением
Присоединяйтесь к нам...
Радиус вписанной в квадрат окружности равен 22√2. Найдите диагональ этого квадрата.
В прямоугольном треугольнике гипотенуза равна 70, а один из острых углов равен 45°. Найдите площадь треугольника.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Касательные в точках A и B к окружности с центром O пересекаются под углом 28°. Найдите угол ABO. Ответ дайте в градусах.
Прямая, параллельная основаниям трапеции
ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
Комментарии: