Человек ростом 1,8 м стоит на расстоянии 6 м от столба, на котором висит фонарь на высоте 7,2 м. Найдите длину тени человека в метрах.
Рассмотрим рисунок:
BD - человек
AE - высота фонаря
ED - расстояние от фонаря до человека
DC - длина тени человека
Рассмотрим треугольники ACE и BCD.
∠C - общий
∠AEC=∠BDC=90° (это прямые углы)
Следовательно, по
первому признаку подобия треугольников, эти треугольники
подобны.
Тогда:
AE/BD=EC/DC
AE/BD=(ED+DC)/DC
7,2/1,8=(6+DC)/DC
4=6/DC+1
3=6/DC
DC=6/3=2
Ответ: 2 м.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C прямой, AC=9, cosA=0,3. Найдите AB.
Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен
60°. Найдите длину хорды АВ, если радиус окружности равен 8.
В треугольнике ABC угол C равен 90°, AC=10, tgA=0,1. Найдите BC.
В окружности с центром в точке О проведены диаметры AD и BC, угол
OCD равен 80°. Найдите величину угла OAB.
Точка О – центр окружности, /AOB=70° (см. рисунок). Найдите величину угла ACB (в градусах).
Комментарии:
(2016-10-29 11:49:48) Администратор: Кристина, (6+DC)/DC=6/DC+DC/DC=6/DC+1
(2016-10-29 11:21:57) Кристина: как из выражения 6+DC/DC у нас получается 6/DC+1?