ОГЭ, Математика. Геометрия: Задача №8EAAA5 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №8EAAA5

Задача №57 из 1087
Условие задачи:

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Решение задачи:

BM - медиана треугольника АВС, следовательно, она делит этот треугольник на два равных по площади треугольника ( свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM.
SABK+SAKM=SABM=SABC/2
AP - биссектриса, по теореме о биссектрисе можно записать AM/AB=KM/BK.
По условию задачи AC втрое больше AB, следовательно, AM в 1,5 раза больше АВ (т.к. является половиной АС)
KM/BK=1,5. Т.к. площадь треугольника вычисляется по формуле S=1/2*h*a, где а-основание и h-высота, то можем записать:
SAKM=1/2*h*KM=1/2*h*(1,5*BK),
SAKM=1/2*h*(3/2*BK)=3/2*(1/2*h*BK)=3/2*SABK (т.к. высота h для этих треугольников общая)
SABK+SAKM=SABM=SABC/2
SABK+3/2*SABK=SABC/2
5/2*SABK=SABC/2
SABK=SABC/5
По тому же свойству биссектрисы для треугольника ABC получаем, что AC/AB=CP/PB
AC/AB=3 (по условию задачи), следовательно, CP=3*PB
SAPC=1/2*h*PC=1/2*h*(3*PB)=3*(1/2*h*PB)=3*SABP,
SABP+SAPC=SABC
SABP+3*SABP=SABC
SABP=SABC/4
Далее найдем площадь треугольника BPK:
SBPK=SABP-SABK
Ранее мы нашли, что SABK=SABC/5
SBPK=SABC/4-SABC/5=SABC/20
Найдем площадь четырехугольника KPCM:
SKPCM=SCMB-SBKP
SKPCM=SABC/2-SABC/20, (площадь CMB мы нашли ранее),
SKPCM=9/20*SABC
Отношение площадей ABK к KPCM =(SABC/5)/(9/20*SABC)=4/9
Ответ: отношение площади треугольника ABK к площади четырёхугольника KPCM=4/9.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №094344

Какие из следующих утверждений верны?
1) Один из двух смежных углов острый, а другой тупой.
2) Площадь квадрата равна произведению двух его смежных сторон.
3) Все хорды одной окружности равны между собой.



Задача №0CC927

В параллелограмме ABCD точка E — середина стороны CD. Известно, что EA=EB. Докажите, что данный параллелограмм — прямоугольник.



Задача №F894AD

Укажите номера верных утверждений.
1) Если один из углов треугольника прямой, то треугольник прямоугольный.
2) Диагонали квадрата точкой пересечения делятся пополам.
3) Точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.



Задача №56179A

Стороны AC, AB, BC треугольника ABC равны 23, 7 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.



Задача №04A87F

Медиана BM треугольника ABC равна 3 и является диаметром окружности, пересекающей сторону BC в её середине. Найдите диаметр описанной окружности треугольника ABC.

Комментарии:


(2015-03-09 16:04:39) Администратор: Виталий, 1+(3/2)=(2/2)+(3/2)=5/2.
(2015-03-06 19:24:21) Виталий: SABK+SAKM=SABM=SABC/2 SABK+3/2*SABK=SABC/2 5/2*SABK=SABC/2 SABK=SABC/5 Почему 52????
(2014-05-29 21:04:23) Администратор: Мария, как повезет )
(2014-05-29 20:00:54) Мария: сложная...неужели она будет на экзамене?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика