ОГЭ, Математика. Геометрия: Задача №26972C | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №26972C

Задача №491 из 1087
Условие задачи:

Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.

Решение задачи:

Вариант №1 (Прислал один из наших пользователей, имя не известно).
∠KBP=90° (по условию)
Прямоугольный треугольник KPB с гипотенузой PK вписан в окружность.
Следовательно, PK является диаметром окружности. (по теореме об описанной окружности).
KP=BH=13
Ответ: BH=13


Вариант №2.
Проведем отрезки KH и HP.
Треугольники BKH и BPH являются вписанными в данную окружность. А т.к. центр этой окружности располагается на середине их стороны BH, то это означает, что эти треугольники прямоугольные с гипотенузой BH (по свойству описанной окружности).
Следовательно, /HKB и /HPB - прямые.
Рассмотрим четырехугольник BKHP, сумма углов любого четырехугольника равна 360°, следовательно /HKB+/KBP+/HPB+/PHK=360°
90°+90°+90°+/PHK=360°
/PHK=90°
То есть получается, что четырехугольник BKHP является прямоугольником. Диагонали этого прямоугольника BH и PK.
PK=BH=13 (по свойству прямоугольника)
Ответ: BH=13

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E30205

В трапеции ABCD AB=CD, ∠BDA=62° и ∠BDC=42°. Найдите угол ABD. Ответ дайте в градусах.



Задача №3F0F37

Найдите площадь трапеции, изображённой на рисунке.



Задача №2AC5D1

В выпуклом четырехугольнике ABCD известно, что AB=BC, AD=CD, ∠B=133°, ∠D=173°. Найдите угол A. Ответ дайте в градусах.



Задача №AEC5CC

Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.



Задача №01130C

Стороны AC, AB, BC треугольника ABC равны 25, 11 и 2 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если ∠KAC>90°.

Комментарии:


(2019-09-05 10:22:32) Администратор: Ольга, не очень понятно, что Вы хотели сказать. Напишите, пожалуйста, поподробней.
(2019-09-04 16:31:29) Ольга: В данной задаче нужно показать два решения на 1 балл и на 0 баллов как в ОГЭ, ПОДЧЕРКНУВ ПОГРЕШНОСТИ ОБОСНОВАТЬ ВЫСТАВЛЕННЫЕ БАЛЛЫ

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика